

Recomendación UIT-R P.513-13 (09/2016)

Datos de propagación ionosférica y métodos de predicción requeridos para el diseño de servicios y sistemas de satélites

Serie P

Propagación de las ondas radioeléctricas

Prólogo

El Sector de Radiocomunicaciones tiene como cometido garantizar la utilización racional, equitativa, eficaz y económica del espectro de frecuencias radioeléctricas por todos los servicios de radiocomunicaciones, incluidos los servicios por satélite, y realizar, sin limitación de gamas de frecuencias, estudios que sirvan de base para la adopción de las Recomendaciones UIT-R.

Las Conferencias Mundiales y Regionales de Radiocomunicaciones y las Asambleas de Radiocomunicaciones, con la colaboración de las Comisiones de Estudio, cumplen las funciones reglamentarias y políticas del Sector de Radiocomunicaciones.

Política sobre Derechos de Propiedad Intelectual (IPR)

La política del UIT-R sobre Derechos de Propiedad Intelectual se describe en la Política Común de Patentes UIT-T/UIT-R/ISO/CEI a la que se hace referencia en el Anexo 1 a la Resolución UIT-R 1. Los formularios que deben utilizarse en la declaración sobre patentes y utilización de patentes por los titulares de las mismas figuran en la dirección web http://www.itu.int/ITU-R/go/patents/es, donde también aparecen las Directrices para la implementación de la Política Común de Patentes UIT-T/UIT-R/ISO/CEI y la base de datos sobre información de patentes del UIT-R sobre este asunto.

Series de las Recomendaciones UIT-R					
	(También disponible en línea en http://www.itu.int/publ/R-REC/es)				
Series	Título				
во	Distribución por satélite				
BR	Registro para producción, archivo y reproducción; películas en televisión				
BS	Servicio de radiodifusión (sonora)				
BT	Servicio de radiodifusión (televisión)				
F	Servicio fijo				
M	Servicios móviles, de radiodeterminación, de aficionados y otros servicios por satélite conexos				
P	Propagación de las ondas radioeléctricas				
RA	Radioastronomía				
RS	Sistemas de detección a distancia				
S	Servicio fijo por satélite				
SA	Aplicaciones espaciales y meteorología				
SF	Compartición de frecuencias y coordinación entre los sistemas del servicio fijo por satélite y del servicio fijo				
SM	Gestión del espectro				
SNG	Periodismo electrónico por satélite				
TF	Emisiones de frecuencias patrón y señales horarias				
V	Vocabulario y cuestiones afines				

Nota: Esta Recomendación UIT-R fue aprobada en inglés conforme al procedimiento detallado en la Resolución UIT-R 1.

Publicación electrónica Ginebra, 2017

© UIT 2017

Reservados todos los derechos. Ninguna parte de esta publicación puede reproducirse por ningún procedimiento sin previa autorización escrita por parte de la UIT.

RECOMENDACIÓN UIT-R P.5134-13

Datos de propagación ionosférica y métodos de predicción requeridos para el diseño de servicios y sistemas de satélites

(Cuestión UIT-R 218/3)

(1978-1990-1992-1994-1997-1999-2001-2003-2005-2007-2009-2012-2013-2016)

Cometido

La Recomendación UIT-R P.531 describe un método para evaluar los efectos de la propagación ionosférica en trayectos Tierra-espacio a frecuencias que oscilan entre 0,1 y 12 GHz. Cuando la señal atraviesa la ionosfera, pueden tener lugar los siguientes efectos en el trayecto Tierra-espacio:

- rotación de la polarización (rotación de Faraday) debida a la interacción de la onda electromagnética con el medio ionizado en el campo magnético de la Tierra a lo largo del trayecto;
- retardo de grupo y avance de fase de la señal debido al contenido total de electrones acumulados a lo largo del trayecto;
- variación rápida de la amplitud y la fase (centelleos) de la señal debido a estructuras irregulares de pequeña escala en la ionosfera;
- cambios en la dirección aparente de llegada debido a la refracción;
- efectos Doppler debido a rotaciones de polarización no lineales y a retardos temporales.

Los datos y métodos descritos en la presente Recomendación se aplican a la planificación de sistemas de satélite, en las gamas de validez respectivas indicadas en el Anexo 1.

Palabras clave

Centelleo, propagación transionosférica, retardo de grupo

La Asamblea de Radiocomunicaciones de la UIT.

considerando

- a) que la ionosfera ocasiona efectos de propagación significativos hasta valores de frecuencia de al menos 12 GHz;
- b) que tales efectos pueden ser especialmente significativos para servicios con satélites no geoestacionarios por debajo de los 3 GHz;
- c) que se han presentado datos experimentales y/o se han elaborado métodos de modelado que permiten predecir los parámetros de propagación ionosférica necesarios para planificar una serie de sistemas de satélites;
- d) que los efectos ionosféricos pueden influir en el diseño y en la calidad de los sistemas de radio en que intervienen vehículos espaciales;
- *e*) que se ha comprobado que estos datos y métodos resultan utilizables, teniendo en cuenta la variabilidad natural de los fenómenos de propagación, en aplicaciones de planificación de sistemas de satélites,

recomienda

1 que se adopten los datos preparados y los métodos elaborados que se consignan en el Anexo 1 para planificar sistemas de satélites dentro de los respectivos márgenes de validez indicados en el Anexo 1.

Anexo 1

1 Introducción

El presente Anexo versa sobre los efectos de propagación ionosférica en los trayectos Tierra-espacio. Desde el punto de vista del diseño de sistemas, el impacto de dichos efectos puede resumirse del siguiente modo:

- a) el contenido electrónico total (CET) acumulado a lo largo del sector de transmisión de un sistema del servicio móvil por satélite (SMS) que penetre en la ionosfera ocasiona una rotación de la polarización (rotación de Faraday) de la portadora del SMS y un retardo temporal de la señal, así como una modificación de la dirección aparente de llegada debida a la refracción;
- b) los grupos ionosféricos aleatorios localizados, comúnmente denominados irregularidades ionosféricas, ocasionan, además, rotaciones excesivas y aleatorias y retardos temporales, los cuales sólo pueden describirse en términos estocásticos;
- c) dado que las rotaciones y los retardos temporales relacionados con la densidad en electrones están en relación de dependencia no lineal con la frecuencia, los fenómenos descritos en a) y b) dan lugar, además, a una dispersión o una distorsión de la velocidad de grupo de las portadoras del SMS;
- d) además, las irregularidades ionosféricas localizadas actúan también como lentes convergentes y divergentes que enfocan y desenfocan las ondas radioeléctricas. Dichos efectos se denominan comúnmente centelleos, y afectan a la amplitud, la fase y el ángulo de llegada de la señal del SMS.

Dada la compleja naturaleza de la física de la ionosfera, no siempre es posible resumir sucintamente en fórmulas analíticas sencillas los parámetros de los sistemas afectados por efectos ionosféricos como los indicados más arriba. Desde un punto de vista práctico, la forma más adecuada de representar dichos efectos consiste en recurrir a los datos pertinentes publicados en cuadros y/o gráficos, y acompañados de una serie de notas de carácter descriptivo o de matización.

Al considerar los efectos de la propagación en el diseño del SMS en frecuencias inferiores a 3 GHz, hay que tener en cuenta que:

- e) los efectos de propagación espacio-Tierra normalmente conocidos ocasionados por hidrometeoros no guardan una relación significativa con los efectos descritos en los § f) y h);
- f) los efectos multitrayecto cerca de la superficie, en presencia de obstáculos naturales o artificiales y/o con ángulos de elevación bajos, son siempre críticos;
- g) los efectos multitrayecto cerca de la superficie varían según sea la localidad considerada y, en consecuencia, no son determinantes en el diseño global de sistemas del SMS considerado cuando haya que tomar en consideración factores de propagación a escala mundial;
- h) los efectos ionosféricos son los efectos de propagación más importantes con los que hay que contar, a escala mundial, al diseñar sistemas del SMS.

2 Antecedentes

Debido a la radiación solar, la ionosfera de la Tierra está integrada por varias regiones de ionización. A todos los efectos prácticos en materia de comunicaciones, se ha observado que las regiones de la ionosfera, D, E y F y las capas superiores contribuyen al CET entre el satélite y los terminales de tierra.

En cada región, el medio ionizado no es homogéneo en el espacio ni constante en el tiempo. Desde un punto de vista general, la ionización de fondo experimenta variaciones relativamente regulares, tanto diurnas como estacionales o debidas al ciclo solar de 11 años, y depende en gran medida de cuál sea la localidad geográfica que se considera y la actividad geomagnética. Aparte de la ionización de fondo, siempre se manifiestan estructuras no estacionarias de pequeña escala y altamente dinámicas, que se conocen con el nombre de irregularidades. Tanto la ionización de fondo como las irregularidades degradan las ondas radioeléctricas. Además, el índice de refracción es dependiente de la frecuencia, lo que equivale a decir que el medio es dispersivo.

3 Degradaciones esenciales ocasionadas por la ionización de fondo

Varios de esos efectos, como la refracción, la dispersión y el retardo de grupo son, en magnitud, directamente proporcionales al CET; la rotación de Faraday es también aproximadamente proporcional al CET, ponderándose las contribuciones de las distintas partes del trayecto con la componente longitudinal del campo magnético. Por tanto, el conocimiento del CET permite estimar cuantitativamente muchos efectos ionosféricos importantes.

3.1 CET

El CET, N_T , puede evaluarse aplicando la siguiente fórmula:

$$N_T = \int_{s} n_e(s) \, \mathrm{d}s \tag{1}$$

donde:

s: trayecto de propagación (m)

 n_e : concentración de electrones (el/m³).

Aun cuando se conozca exactamente el trayecto de propagación, es difícil evaluar N_T ya que n_e tiene variaciones diurnas, estacionales y dependientes del ciclo solar.

Para elaborar modelos, el valor del CET que se cita normalmente corresponde a un trayecto cenital con una sección transversal de 1 m². El CET de esta columna vertical puede variar entre 10¹⁶ y 10¹⁸ el/m² y su valor máximo se produce durante las horas diurnas.

Para calcular el CET se dispone de un procedimiento basado en la Ionosfera de Referencia Internacional (IRI-2012) o uno más flexible, que también sirve para la evaluación oblicua del CET y que se basa en el modelo NeQuick2 v.P531-12. Ambos procedimientos se indican más adelante.

3.1.1 Método basado en la IRI-2012

La ionosfera mediana mensual normalizada es la IRI-2012 de COSPAR-URSI. En condiciones de actividad solar moderada a baja, es posible recurrir a técnicas numéricas a fin de obtener valores correspondientes a cualquier localidad, hora y conjunto elegido de alturas, que pueden ser de hasta 2 000 km. En condiciones de actividad solar alta, pueden surgir problemas con los valores de electrones contenidos que se derivan de IRI-2012. En muchos casos es suficiente con estimar el contenido de electrones multiplicando la densidad de cresta de electrones por un grosor espacial equivalente a 300 km.

3.1.2 Método basado en el NeQuick2

La distribución de la densidad en electrones del modelo está representada por una función continua que también es continua en todas las primeras derivaciones espaciales. Se compone de dos partes: la parte inferior (por debajo de la cresta de la capa F2) y la parte superior (por encima de la cresta de

la capa F2). La altura máxima de la capa F2 se calcula a partir de M(3000)F2 y de la relación que existe entre foF2 y foE (véase la Recomendación UIT-R P.1239).

La parte inferior está descrita por las capas de semiEpstein para la representación de E, F1 y F2. La parte superior de la capa F es de nuevo una capa semiEpstein con un parámetro cuyo espesor depende de la altura. El modelo NeQuick2 v.P531-12 proporciona la densidad en electrones y el CET a lo largo de trayectos arbitrarios de tierra a satélite o satélite a satélite.

El programa informático y los ficheros de datos asociados son productos digitales integrados en la presente Recomendación y están disponibles en el archivo R-REC-P.531-13-201609-I!!ZIP-E (Parte 1).

3.2 Rotación de Faraday

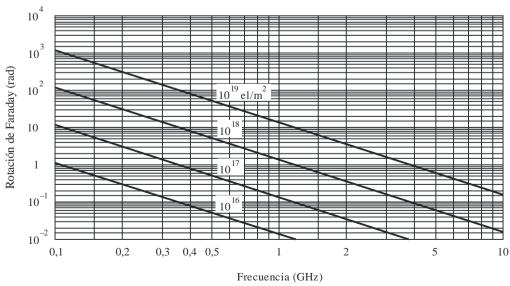
Al propagarse a través de la ionosfera, una onda linealmente polarizada experimentará una rotación gradual de su plano de polarización, debido a la presencia del campo geomagnético y a la anisotropía del medio plasmático. La magnitud de la rotación de Faraday, θ , dependerá de la frecuencia de la onda radioeléctrica, la intensidad del campo magnético y la densidad de electrones del plasma, según se expresa en la siguiente fórmula:

$$\theta = 2,36 \times 10^{-14} \frac{B_{av} N_T}{f^2} \tag{2}$$

donde:

θ: ángulo de rotación (rad)

 B_{av} : campo magnético medio de la Tierra (Wb · m⁻² o Teslas)


 N_T : contenido total de electrones (CET (electrones · m⁻²)

f: frecuencia (GHz).

Los valores típicos de θ se indican en la Fig. 1.

FIGURA 1

Rotación de Faraday en función del CET y de la frecuencia

La rotación de Faraday es, por tanto, inversamente proporcional al cuadrado de la frecuencia y directamente proporcional a la integral de la concentración electrónica a lo largo del trayecto de propagación y al campo magnético medio de la Tierra. Su valor mediano a una frecuencia dada presenta un comportamiento cíclico diurnal, estacional y solar muy regular que es posible predecir. En consecuencia, este componente regular de la rotación de Faraday puede ser compensado mediante un ajuste manual del ángulo de inclinación de polarización en las antenas de la estación terrena. No obstante, podrían producirse importantes desviaciones con respecto a este comportamiento regular durante porcentajes pequeños de tiempo, como consecuencia de tormentas geomagnéticas y, en menor medida, de perturbaciones ionosféricas itinerantes de gran escala. Estas desviaciones no pueden ser predichas con antelación. La aparición de fluctuaciones intensas y rápidas de los ángulos de rotación de Faraday en señales en ondas métricas ha estado asociada a centelleos de amplitud intensos y rápidos, respectivamente, en lugares próximos a las crestas de anomalía ecuatorial.

La discriminación de polarización cruzada para antenas alineadas, XPD (dB), está relacionada con el ángulo de rotación de Faraday, θ, como sigue:

$$XPD = -20 \log (tg \theta) \tag{3}$$

3.3 Retardo de grupo

La presencia de partículas cargadas en la ionosfera reduce la velocidad de propagación de las señales radioeléctricas a lo largo del trayecto. Al retardo temporal, con el que se excede del tiempo de propagación en el espacio libre y que se representa normalmente como t, se le denomina retardo de grupo. Es un factor importante a tener en cuenta en los sistemas del SMS. También tiene lugar un avance de fase similar. Esta magnitud puede calcularse del siguiente modo:

$$t = 1.345 \, N_T / f^2 \times 10^{-7} \tag{4}$$

donde:

t: tiempo de retardo (s) con respecto a la propagación en el vacío

f: frecuencia de propagación (Hz)

 N_T : se determina a lo largo del trayecto de propagación oblicuo.

La Fig. 2 representa el retardo, t, en función de la frecuencia, f, para varios valores de contenido de electrones a lo largo del trayecto del rayo.

En una banda de frecuencias en torno a 1 600 MHz, el retardo de grupo de la señal varía entre aproximadamente 0,5 y 500 ns para un CET de 10¹⁶ a la 10¹⁹ el/m². La Fig. 3 muestra el porcentaje anual de las horas diurnas para las que el retardo de propagación rebasará los 20 ns en un periodo de actividad solar relativamente intensa.

3.4 Dispersión

Cuando las señales transionosféricas ocupan una anchura de banda importante, el retardo (que es función de la frecuencia) introduce dispersión. El retardo diferencial a lo largo de la anchura de banda es proporcional a la densidad de electrones integrada a lo largo del trayecto del rayo. Para una anchura de banda fija, la dispersión relativa es inversamente proporcional al cubo de la frecuencia. Así, en los sistemas que implican transmisiones en banda ancha es preciso tener en cuenta este efecto en ondas métricas, y posiblemente también en ondas decimétricas. Por ejemplo, para un contenido de electrones integrado de 5×10^{17} el/m², una señal con 1 µs de duración del impulso tendrá un retardo diferencial de 0,02 µs a 200 MHz, tiempo que se reducirá a 0,00074 µs para 600 MHz (véase la Fig. 4).

3.5 Velocidad de variación del CET

Con un satélite en órbita, el ritmo de variación del CET observado se debe en parte al cambio de dirección del trayecto del rayo y en parte a la variación de la propia ionosfera. Para un satélite a una altura de 22 000 km que atraviesa la zona auroral, se ha observado una tasa de variación de CET máxima de 0.7×10^{16} el/m²/s. A efectos de navegación, este ritmo de variación corresponde a una velocidad aparente de 0.11 m/s.

FIGURA 2

Retardo de propagación en la ionosfera en función de la frecuencia, para varios valores de contenido de electrones

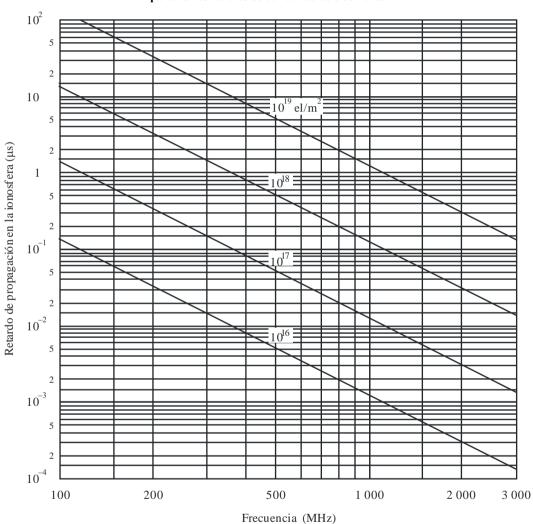


FIGURA 3

Curvas de porcentaje del promedio anual de horas diurnas en que el retardo de propagación (incidencia vertical) a 1,6 GHz rebasa los 20 ns (número de manchas solares = 140)

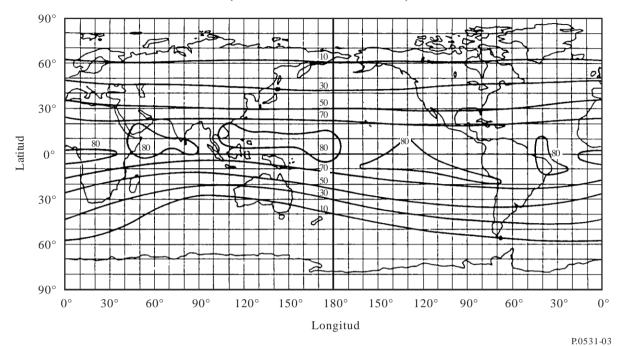
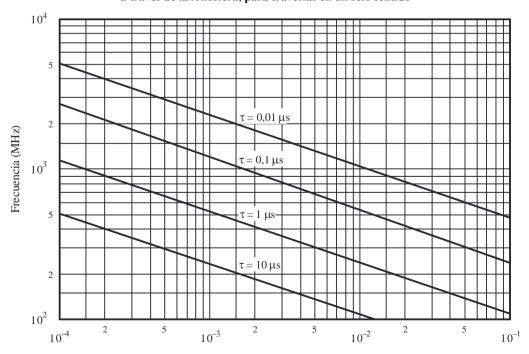



FIGURA 4

Diferencia de retardo de propagación entre las frecuencias inferior y superior del espectro de un impulso de anchura, τ, transmitido a través de la ionosfera, para travesías en un solo sentido

Diferencia de retardo de grupo (μs)

$$\int n_e \, \mathrm{d}s = 5 \times 10^{17} \, \mathrm{el/m}^2$$

4 Degradación principal debido a irregularidades

4.1 Centelleo

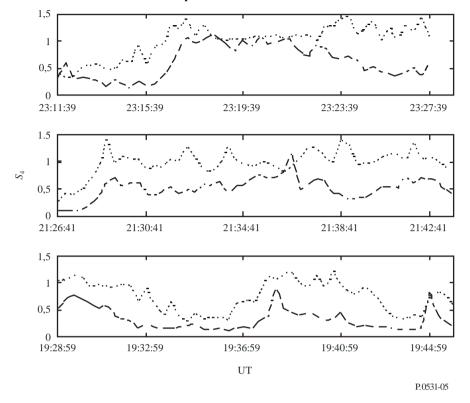
Una de las perturbaciones más agudas que se registran a lo largo de un trayecto de propagación transionosférico para señales por debajo de 3 GHz es la que provoca el centelleo ionosférico, cuyos efectos pueden observarse en ocasiones hasta 10 GHz. Los centelleos se forman por fluctuaciones del índice de refracción debido a las heterogeneidades del medio. En el receptor, la señal muestra rápidas fluctuaciones de amplitud y fase, así como modificaciones en sus propiedades de coherencia temporal. Pequeñas estructuras irregulares en la densidad de ionización ocasionan, principalmente a través de mecanismos de centelleo y difracción hacia adelante, fenómenos de dispersión en los que la señal estacionaria del receptor es sustituida por una señal que fluctúa en amplitud, fase y dirección aparente de llegada. Dependiendo de la modulación del sistema, diversos aspectos del centelleo afectan de manera diferente la calidad de funcionamiento de aquél. El parámetro que se utiliza más comúnmente para caracterizar las fluctuaciones de intensidad es el índice de centelleo, S_4 , que viene definido por la ecuación (5):

$$S_4 = \left(\frac{\left\langle I^2 \right\rangle - \left\langle I \right\rangle^2}{\left\langle I \right\rangle^2}\right)^{1/2} \tag{5}$$

donde I es la intensidad de la señal (proporcional al cuadrado de la amplitud de la señal) y $\langle \rangle$ significa promediación.

El índice de centelleo S_4 guarda relación con fluctuaciones de la intensidad de cresta a cresta. La relación exacta entre el índice de centelleo S_4 y las fluctuaciones de la intensidad de cresta a cresta depende de la distribución de la intensidad y del algoritmo para deducir la tendencia de la intensidad relacionada con el procedimiento de cálculo del índice de centelleo S_4 . La mejor forma de describir la distribución de la intensidad es mediante la distribución de Nakagami para una amplia gama de valores de S_4 .

Por motivos prácticos, la fuerza de centelleo puede clasificarse en tres niveles: débil, moderado o intenso, cuyos valores corresponden a $S_4 < 0.3$; 0.3 a 0.6 y $S_4 > 0.6$, respectivamente.


En los niveles débil y moderado, S_4 revela una dependencia de frecuencia estable $f^{-\upsilon}$ con υ igual a 1,5 para la mayoría de las observaciones multifrecuencia. Además, en el nivel débil, la amplitud sigue una distribución logarítmica normal.

En el nivel intenso se ha observado que el factor υ disminuye debido a la saturación del centelleo bajo la gran influencia de la dispersión múltiple. Cuando S_4 se aproxima a 1,0, la intensidad sigue la distribución de Rayleigh. En ocasiones, S_4 puede ser superior a 1 y alcanzar valores de hasta 1,5. En la Fig. 5 se observa un ejemplo de la dependencia de S_4 con respecto a la frecuencia en ondas métricas y decimétricas en relación con tres estaciones aurorales para centelleos débiles, moderados e intensos.

Los centelleos de fase siguen una distribución gaussiana de media cero. La desviación típica se utiliza para establecer las características de los centelleos de fase (σ_{ϕ}). En los niveles débil y moderado, la mayoría de las observaciones en regiones ecuatoriales indican que los centelleos de fase e intensidad están estrechamente correlacionados; S_4 y σ_{ϕ} (cuando se expresan en radianes) tienen valores similares.

FIGURA 5

Índices de centelleo medidos en Kiruna (a), Lulea (b) y Kokkola (c) a 150 MHz (línea de puntos) y 400 MHz (línea de trazos), registrados a partir del satélite Tsykada LEO de órbita polar en condiciones de perturbación el 30 de octubre de 2003

En el Cuadro 1 se indica empíricamente una adecuada conversión empírica entre S_4 y las fluctuaciones de cresta a cresta aproximadas, P_{fluc} (dB), cuando el índice S_4 no es mayor que 1,0. Esta relación puede aproximarse mediante la expresión:

$$P_{fluc} = 27.5 S_4^{1,26} \tag{6}$$

siendo $0.0 \le S_4 \le 1.0$.

CUADRO 1

Cuadro de conversión empírica de índices de centelleo

S_4	P_{fluc} (dB)
0,1	1,5
0,2	3,5
0,3	6
0,4	8,5
0,5	11
0,6	14
0,7	17
0,8	20
0,9	24
1,0	27,5

Los estudios futuros podrían modificar la validez y el alcance de la ecuación (6).

4.2 Dependencia geográfica, equinoccial y solar de los centelleos

Como se indica en la Fig. 6, hay dos zonas geográficas de intenso centelleo, una a elevadas latitudes, y la otra, centrada entre $\pm 20^{\circ}$ con respecto al ecuador magnético. Se ha observado intenso centelleo a frecuencias del orden de hasta GHz en ambos sectores, mientras que en las latitudes medias raramente se produce centelleo, por ejemplo durante tormentas geomagnéticas. En el sector ecuatorial hay un máximo nocturno acentuado de actividad, como puede verse en las Figs. 6 y 7. Para el centelleo ecuatorial en GHz, se ha observado que la actividad máxima tiene lugar en el equinoccio de primavera y que se registra una elevada actividad en el equinoccio de otoño.

Un suceso típico de centelleo tiene su inicio después del atardecer ionosférico local y puede durar de 30 min a varias horas. En el caso de las estaciones ecuatoriales en años de máximos solares, el centelleo ionosférico se registra casi todas las noches después de la puesta de sol, y las fluctuaciones de cresta a cresta del nivel de la señal en 4 GHz sobrepasan los 10 dB en magnitud.

FIGURA 6

Intensidad del desvanecimiento por centelleo (proporcional a la densidad del sombreado) a 1,5 GHz durante los años de máxima y mínima actividad solar

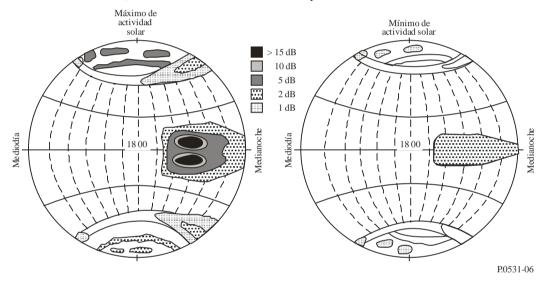
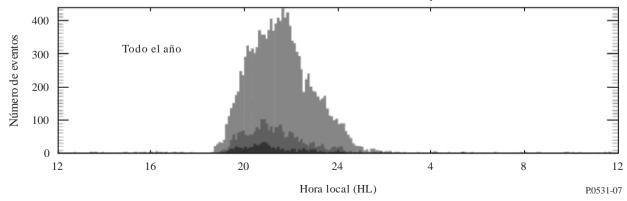



FIGURA 7

Distribución de centelleos durante un año en Cayena, de junio de 2006 a junio de 2007; nivel S4 débil (en alto); moderado (en el medio); intenso (por debajo) para ángulos de elevación > 20°

Cayena: datos de junio de 2006 a julio de 2007 Nivel S_4 : (0,25-0,4), (0,4, 0, 0,55), (>0,55) Elevación > 20°, trás la corrección multitrayecto

4.3 Modelo de centelleo ionosférico

Para predecir la intensidad del centelleo ionosférico en los trayectos Tierra-espacio, se recomienda la utilización del Modelo de Centelleo Ionosférico Mundial (GISM, *global ionospheric scintillation model*). El GISM permite predecir el valor del índice S_4 , la profundidad del desvanecimiento de amplitud así como los valores eficaces de la desviación de fase y de la desviación angular debidas al centelleo en función de la ubicación del satélite y de la estación en tierra, de la fecha, hora y de la frecuencia de trabajo. Este modelo se basa en el método de filtrado de fases múltiples. Los valores por defecto de los principales parámetros internos del modelo son los siguientes:

- Pendiente del espectro de intensidad p = 3
- Tamaño medio de las irregularidades $L_0 = 500 \text{ km}$
- Desviación típica de las fluctuaciones de la densidad de electrones $\sigma_{Ne} = 0,2$.

Teniendo en cuenta la curvatura de los rayos, se calculan las características de la ionosfera lejana mediante una subrutina que utiliza el modelo ionosférico NeQuick. El código fuente y el programa del GISM son un producto digital integrado en la presente Recomendación y está disponible en el archivo R-REC-P.531-13-201609-I!!ZIP-E (Parte 2).

4.4 Estadísticas instantáneas y comportamiento espectral

4.4.1 Estadísticas instantáneas

En el transcurso de un centelleo ionosférico, se estima que la función de densidad de Nakagami se ajusta suficientemente a la descripción estadística de la variación instantánea de amplitud. La función de densidad de la intensidad de señal vendrá dada por:

$$p(I) = \frac{m^m}{\Gamma(m)} I^{m-1} \exp(-mI)$$
 (7)

donde el «coeficiente-m» de Nakagami está relacionado con el índice de centelleo S4 según:

$$m = 1/S_4^2 \tag{8}$$

Al formular la ecuación (7), el nivel de intensidad promedio de *I* es normalizado a 1,0. El cálculo de la fracción de tiempo en que la señal rebasa o no alcanza determinado umbral se ve considerablemente facilitado por el hecho de que la función de distribución correspondiente a la densidad de Nakagami viene dada por la expresión siguiente:

$$P(I) = \int_{0}^{I} p(x) dx = \frac{\Gamma(m, mI)}{\Gamma(m)}$$
(9)

donde $\Gamma(m, mI)$ y $\Gamma(m)$ son la función gamma incompleta y la función gamma, respectivamente. A partir de la ecuación (9) es posible calcular la fracción de tiempo en que la señal rebasa o no alcanza determinado umbral durante un suceso ionosférico. Así, por ejemplo, la fracción de tiempo en que la señal registra más de X dB por debajo de la media viene dada por $P(10^{-X/10})$, y la fracción de tiempo en que la señal rebasa la media en más de Y dB viene dada por $1 - P(10^{Y/10})$.

4.4.2 Comportamiento espectral

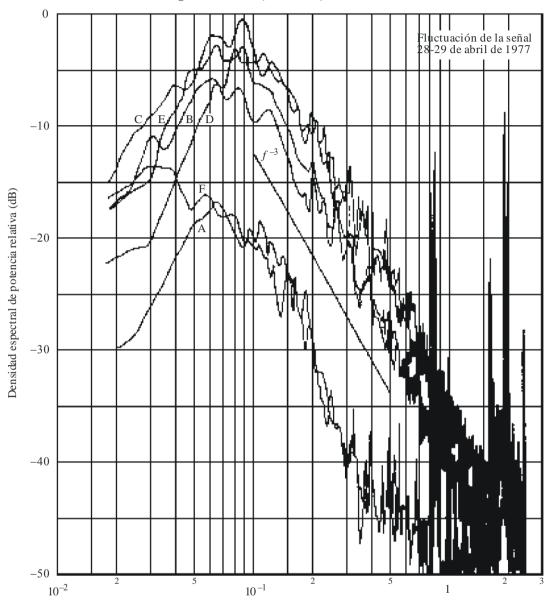
En cuanto a las características temporales, el ritmo de desvanecimiento del centelleo ionosférico es aproximadamente de 0,1 a 1 Hz. Los espectros de potencia espacial y temporal revelan una gran diversidad de pendientes entre los valores f^{-1} a f^{-6} , según indican diferentes observaciones. En la Fig. 8 aparece representado un comportamiento espectral típico. Si no se dispone de resultados de mediciones directas, se recomienda, para las aplicaciones de sistemas, aplicar la pendiente f^{-3} . Este valor es representativo de niveles débiles a moderados de centelleo.

La frecuencia de caída difiere del centelleo de amplitud y fase, como se observa en la Fig. 9. El centelleo de fase presenta más componentes de frecuencia baja pronunciados que el centelleo de amplitud.

4.5 Consideraciones geométricas

4.5.1 Dependencia con respecto al ángulo cenital

En la mayoría de los modelos, S_4^2 resulta ser proporcional a la secante del ángulo cenital, i, del trayecto de propagación. Se supone que esta relación es válida para valores de hasta $i \approx 70^\circ$ para niveles débiles y moderados de centelleo. A ángulos cenitales mayores, convendrá utilizar valores de dependencia comprendidos entre 1/2 y la primera potencia de sec i.


4.5.2 Dependencia estacional-longitudinal

La aparición de centelleos y la magnitud de S_4 presentan una dependencia longitudinal y estacional que es posible parametrizar mediante el ángulo β indicado en la Fig. 9b. Este valor es el ángulo comprendido entre el terminador de poniente y el meridiano magnético local en la cúspide de la línea de campo que atraviesa la línea de visibilidad directa a la altura de la zona de irregularidad. La función de ponderación correspondiente a la dependencia estacional-longitudinal viene dada por la ecuación (10):

$$S_4 \propto \exp\left[-\frac{\beta}{W}\right]$$
 (10)

donde *W* es una constante de ponderación que depende de la localización y del día del año. Por ejemplo, a partir de los datos disponibles sobre Tangua, Hong Kong y Kwajalein, el valor numérico de la constante de ponderación puede ser modelizado conforme se indica en la Fig. 10.

FIGURA 8 Estimaciones de la densidad espectral de potencia para un satélite geoestacionario (Întelsat-IV) en 4 GHz

Frecuencia de la fluctuación (Hz)

El centelleo fue observado durante las noches de los días 28 y 29 de abril de 1977 en la estación terrena de Taipei

- A: 30 min antes de empezar el suceso

- A: 50 initi antes
 B: Al comienzo
 C: 1 h después
 D: 2 h después
 E: 3 h después
 F: 4 h después

FIGURA 9
Espectro de intensidad y fase típico

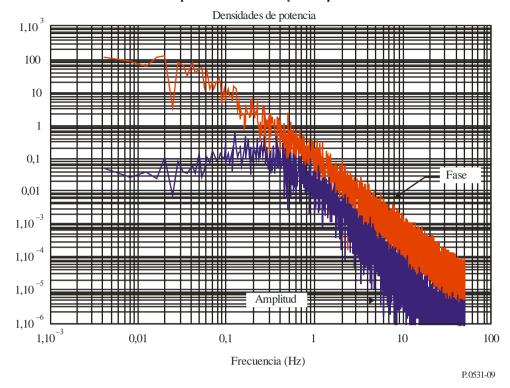


FIGURA 9a

Intersección del trayecto de propagación con una línea de campo magnético a la altitud correspondiente a la región F

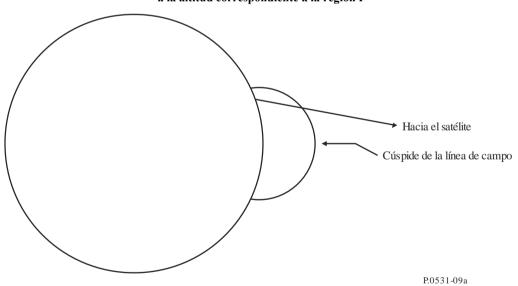


FIGURA 9b Ángulo comprendido entre el meridiano magnético local en la cúspide de la línea de campo indicada en la Fig. 9a

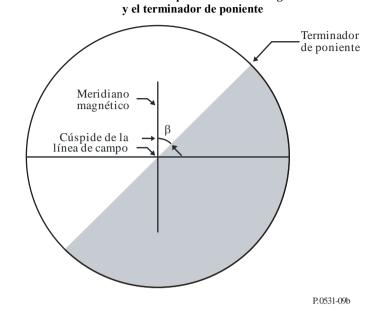
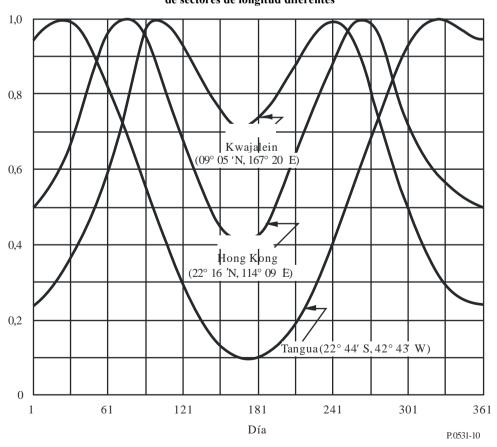



FIGURA 10

Funciones de ponderación estacionales correspondientes a estaciones de sectores de longitud diferentes

4.6 Estadística acumulativa

Al realizar los diseños de los sistemas de radiocomunicaciones por satélite y al evaluar la compartición de frecuencias, los ingenieros de comunicaciones ponen atención no sólo a la degradación y a las interferencias del sistema durante un suceso, sino también a la estadística de sucesos acumulativa de largo periodo. Para evaluar y realizar estadísticas de aparición de sucesos en sistemas de comunicaciones con satélites geoestacionarios, que constituyen la configuración de sistemas de radiocomunicaciones más sencillos, se recomiendan las relaciones de las Figs. 11 y 12. El número de manchas solares representa el promedio de las mismas durante 12 meses.

La distribución acumulativa a largo plazo, P(I), de la intensidad de la señal con respecto a su valor medio puede obtenerse a partir de los valores estadísticos acumulativos a largo plazo, $F(\xi)$, de la fluctuación cresta a cresta, ξ , como los que aparecen en la Fig. 11, de la forma siguiente:

$$P(I) = \sum_{i=0}^{n} f_i P_i(I)$$
 (11)

siendo:

$$f_0 = \mathbf{F} \left(\xi < \xi_1 \right) \tag{11a}$$

$$f_i = F(\xi_i \le \xi < \xi_{i+1})$$
 $(i = 1, 2, ..., n-1)$ (11b)

$$f_n = F (\xi \ge \xi_n) \tag{11c}$$

 ξ_1 y ξ_n son los valores máximo y mínimo de la fluctuación cresta a cresta, respectivamente, y n el número de intervalo de ξ de interés para el usuario:

$$P_i(I) = \Gamma \left(m_i, m_i I \right) / \Gamma(m_i) \tag{11d}$$

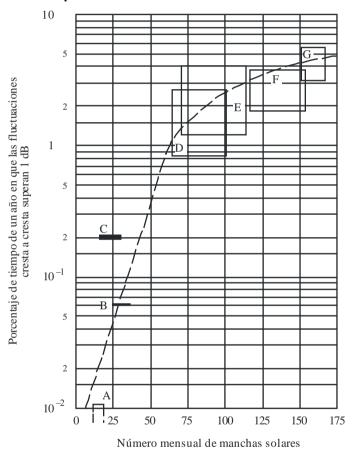
$$m_i = 1/S_{4i}^2 (11e)$$

$$S_{40} = \left[\frac{1}{27.5} \cdot \frac{\xi_1}{2}\right]^{1/1,26} \tag{11f}$$

$$S_{4i} = \left[\frac{1}{27.5} \cdot \frac{\xi_i + \xi_{i+1}}{2} \right]^{1/1,26} \qquad (i = 1, 2, \dots, n-1)$$
 (11g)

$$S_{4n} = \left[\frac{1}{27.5} \cdot \frac{\xi_{n-1} + 3\xi_n}{4} \right]^{1/1,26}$$
 (11h)

En la Fig. 12 se representa un ejemplo de distribución acumulativa a largo plazo de la intensidad de señal obtenida a partir de la curva P6 de la Fig. 11.


4.7 Aparición simultánea de centelleo ionosférico y desvanecimiento por lluvia

Los fenómenos de centelleo ionosférico y desvanecimiento por lluvia constituyen dos tipos de degradación de origen físico completamente distinto. En las regiones ecuatoriales, en años de elevado número de manchas solares la aparición simultánea de estos dos efectos puede representar un porcentaje de tiempo anual no desdeñable en el diseño de sistemas. En la estación terrena de Djutiluhar (Indonesia), el tiempo de aparición simultánea acumulativo fue aproximadamente de 0,06% anual para 4 GHz.

Estos sucesos simultáneos presentan formas a menudo muy diferentes de las manifestadas por cada fenómeno por separado (centelleo o lluvia). Aunque el centelleo ionosférico no es por sí mismo un fenómeno de despolarización, ni el desvanecimiento por lluvia es por sí solo un fenómeno de fluctuación de señal, la aparición simultánea de ambos produce una fluctuación de señal no desdeñable en el canal de polarización cruzada. La existencia de estos sucesos simultáneos debe ser tenida presente en las aplicaciones a sistemas de radiocomunicaciones satélite-Tierra, en los que es necesaria una elevada disponibilidad.

La predicción del desvanecimiento debido a la lluvia se describe en la Recomendación UIT-R P.618.

FIGURA 11 Dependencia del centelleo ionosférico ecuatorial en 4 GHz con respecto al número medio mensual de manchas solares

Los cuadrados representan el intervalo de variación durante un año para diferentes portadoras

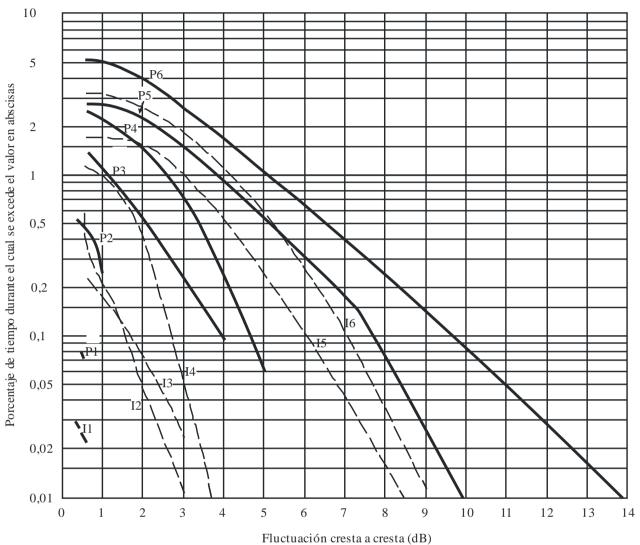
A: 1975-1976, Hong Kong y Bahrein, 15 portadoras B: 1974, Longovilo, 1 portadora

C: 1976-1977, Taipei, 2 portadoras D: 1970-1971, 12 estaciones, > 50 portadoras

E: 1977-1978, Hong Kong, 12 portadoras

F: 1978-1979, Hong Kong, 10 portadoras

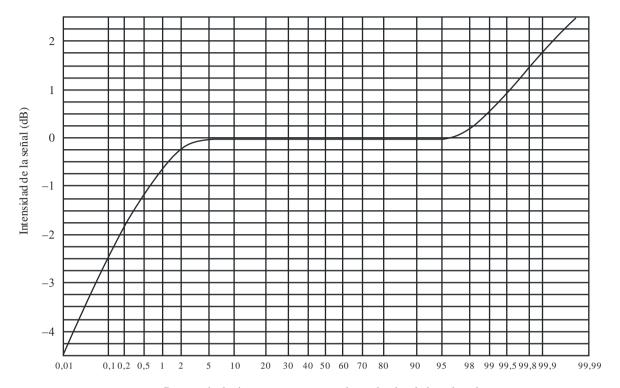
G: 1979-1980, Hong Kong, 6 portadoras


4.8 Modelo de centelleo en gigahertzios

Para evaluar los efectos del centelleo que cabe esperar en una determinada situación, se pueden seguir los pasos que se indican a continuación:

- Paso 1: La Fig. 12 da las estadísticas de aparición del centelleo en trayectos ionosféricos ecuatoriales: fluctuaciones de amplitud de cresta a cresta, P_{fluc} (dB), para la recepción en frecuencia de 4 GHz desde satélites situados en el Este con ángulos de elevación de unos 20° (curvas continuas P) y en el Oeste a unos 30° de elevación (curvas punteadas I). Los datos proporcionados corresponden a diferentes épocas del año y número de manchas solares.
- Paso 2: Puesto que los valores de la Fig. 10 corresponden a una frecuencia de 4 GHz, los valores correspondientes a otras frecuencias se obtienen multiplicando aquellos por $(f/4)^{-1,5}$, donde f es la frecuencia que interesa (GHz).
- Paso 3: Basándose en la Fig. 5 se puede estimar cualitativamente la variación de P_{fluc} , con la localización geográfica y la ocurrencia diurna.
- Paso 4: En tanto que elemento de los cálculos precisos para establecer el enlace, P_{fluc} está relacionado con la pérdida de señal L_p mediante la siguiente fórmula: $L_p = P_{fluc}/\sqrt{2}$.
- Paso 5: El índice de centelleo, S_4 , que es el parámetro que se utiliza más comúnmente al describir el centelleo, se define en el § 4.1 y puede obtenerse a partir de P_{fluc} , utilizando el Cuadro 1.

FIGURA 12


Valores estadísticos anuales de las fluctuaciones cresta a cresta observadas en la estación terrena de Hong Kong (curvas I1, P1, I3-I6, P3-P6) y la estación terrena de Taipei (curvas P2 e I2)

Curva	Periodo	Número de manchas solares
I1, P1	Marzo 75-76	10-15
I2, P2	Junio 76-77	12-26
I3, P3	Marzo 77-78	20-70
I4, P4	Octubre 77-78	44-110
I5, P5	Noviembre 78-79	110-160
I6, P6	Junio 79-80	153-165

FIGURA 13

Ejemplo de valores estadísticos acumulativos a largo plazo de la intensidad de señal (4 GHz, 20° de elevación)

Porcentaje de tiempo en que no se rebasa el valor de la ordenada

P.0531-13

5 Absorción

Cuando no se dispone de información directa, la pérdida por absorción ionosférica puede ser estimada a partir de modelos disponibles aplicando la relación (sec i)/ f^2 para frecuencias superiores a 30 MHz, donde i es el ángulo cenital del trayecto de propagación en la ionosfera. Para regiones ecuatoriales y de latitudes medias, la elección de ondas de radio con frecuencias superiores a 70 MHz asegurará una penetración en la ionosfera sin un nivel de absorción apreciable.

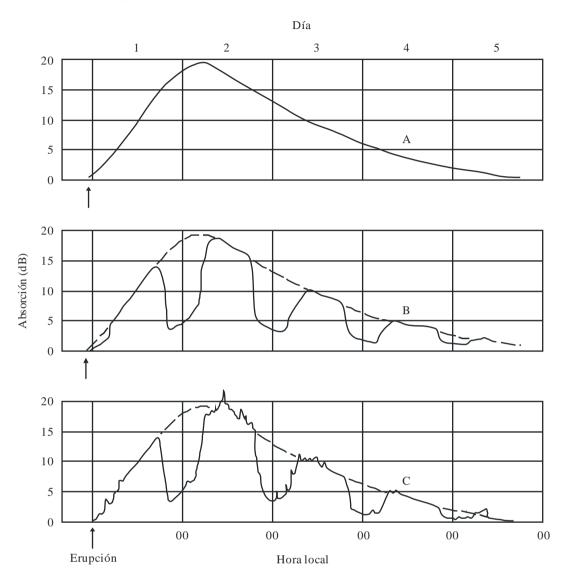
Las mediciones efectuadas en latitudes medias indican que, para un trayecto en la ionosfera en un solo sentido con incidencia vertical, la absorción para 30 MHz en condiciones normales varía normalmente entre 0,2 y 0,5 dB. Durante una erupción solar la absorción aumentará, aunque sin sobrepasar los 5 dB. La absorción puede incrementarse a altas latitudes, por efecto de fenómenos propios del casquete polar y de aurora; estos dos tipos de fenómenos acaecen a intervalos aleatorios, duran periodos de tiempo diversos, y sus efectos están en función del emplazamiento de los terminales y del ángulo de elevación del trayecto. Por consiguiente, para un diseño de sistemas de la máxima eficacia convendrá someter estos fenómenos a un tratamiento estadístico, teniendo presente que la duración de la absorción por efecto de la aurora es del orden de horas, mientras que la absorción en el casquete polar es del orden de días.

5.1 Absorción por efecto de la aurora

Esta absorción se produce por efecto de la concentración de electrones en las regiones D y E causada por la incidencia de la energía electrónica. Esta absorción aparece en un sector comprendido entre 10° y 20° de latitud centrado en una latitud próxima a la de máxima aparición de aurora visible. El fenómeno está constituido por una serie de aumentos discretos de la absorción de duraciones individuales relativamente breves – es decir, desde unos minutos a unas pocas horas – con una duración media de unos 30 min y, por lo general, exhibiendo una estructura temporal irregular. Los aumentos nocturnos consisten por lo general en incrementos rápidos sin brusquedad y disminuciones lentas. Las magnitudes típicas correspondientes a 127 MHz figuran en el Cuadro 2.

CUADRO 2

Absorción por aurora a 127 MHz (dB)


Porcentaje	Ángulo de elevación	
de tiempo	20°	5 °
0,1	1,5	2,9
1	0,9	1,7
2	0,7	1,4
5	0,6	1,1
50	0,2	0,4

5.2 Absorción en el casquete polar

La absorción en el casquete polar que puede producirse en los momentos de máxima actividad solar, acaece a latitudes geomagnéticas superiores a 64°. Este tipo de absorción es producido por la ionización a altitudes superiores a 30 km. Suele tener lugar en forma de sucesos discretos, en ocasiones solapados, asociados casi siempre a fenómenos solares discretos. Se trata de una absorción duradera, detectable sobre el casquete polar iluminado por el Sol. La absorción en casquete polar aparece por lo general durante el cénit del ciclo de manchas solares, periodo en el que pueden producirse de 10 a 12 sucesos por año. Cada uno de estos sucesos puede durar hasta varios días, al contrario de lo que ocurre con la absorción por aurora, que se presenta frecuentemente muy localizada y con variaciones en el transcurso de pocos minutos.

Un rasgo destacable de la absorción en el casquete polar es la considerable reducción de la absorción durante los periodos de oscuridad, para una cadencia de producción de electrones dada. En la Fig. 14 se ha representado un modelo hipotético de la variación diurna (a lo largo del día) de la absorción en el casquete polar tras la aparición de una erupción solar importante, basado en observaciones riométricas efectuadas a diversas latitudes.

FIGURA 14 Modelo hipotético que muestra la absorción en el casquete polar después de una erupción solar importante, tal como se esperaría observar con riómetros a unos 30 MHz

- A: Latitudes elevadas (luz del día durante 24 h)
 B: Latitudes elevadas (periodos iguales de día y de noche)
 C: Latitudes elevadas (zona de aurora)

6 Resumen

En el Cuadro 3 se expone cierto número de valores máximos estimativos de efectos ionosféricos para una frecuencia de 1 GHz. Se supone que el contenido total vertical de electrones de la ionosfera es de 10^{18} el/m² de columna. Se supone también un ángulo de elevación de 30° . Los valores indicados corresponden al desplazamiento transversal de las ondas por la ionosfera en una sola dirección.

CUADRO 3

Efectos ionosféricos máximos estimados a 1 GHz para ángulos de elevación de aproximadamente 30° (en un sentido, transversalmente)

Efecto	Magnitud	Dependencia de la frecuencia
Rotación de Faraday	108°	1/f ²
Retardo de propagación	0,25 μs	$1/f^2$
Refracción	< 0,17 mrad	$1/f^2$
Variación de la dirección de llegada	0,2 min de arco	$1/f^2$
Absorción (casquete polar)	0,04 dB	~1/f ²
Absorción (auroral + casquete polar)	0,05 dB	~1/f ²
Absorción (latitudes medias)	< 0,01 dB	$1/f^2$
Dispersión	0-4 ns/MHz	$1/f^3$
Centelleo	Véase el § 4	Véase el § 4